
Working with C++

Data in Java

Presented by:

Jessica Winblad

This Presentation © 2008 Jessica Winblad

Outline

 Working with C++ DLLs

 Java Native Interface (JNI)

 I/O with Files & Streams

 Byte/Bit Order

 Data Type translation

Real World Example

 Powering test-equipment for 12.5 seconds

Project Requirements

 Send voltage out a parallel port for a specified

time in seconds, to a half-second accuracy

 Run on a Windows 2000 or XP machine

 Integrate with a test-suite already written in Java

Engineering Challenge

 With Windows 98 this would have been easy

 Windows 2000 provides less transparent access

to the machine’s hardware

 Only hardware device drivers can directly access the

hardware

 You can’t write device drivers in Java

Solution

 Use a device driver DLL that allows direct

programming of the parallel port

 Use JNI to access the device driver

JNI (Java Native Interface)

 class ioPort {

public native void Out32(

short PortAddress, short data);

static { System.loadLibrary("jnpout32pkg");}

}

…

ioPort pp = new ioPort();

pp.Out32(0x378, currentVal);

Another Real World Example

Byte and Bit Order Matter

 Big Endian (“Network Byte Order”)

 Eg: Motorolla 68k processor

 Little Endian

 Eg: x86 PC

 May need to test for

“endianness”

 Java has classes to help with

correcting byte order

(eg: java.nio.ByteOrder)

A source value of

0xFFFE =

1111 1111 1111 1110

Could be read as:

 1111 1110 1111 1111

 1111 1111 0111 1111

 etc.

Converting Data Types

 Applies to both streams and files

 If you have a double in C++ should you use a

readDouble() method of your java stream/file

reader to read it? (No)

 Java and C++ do not always have the same

names for equivalent primitive types.

 Some types don’t map nicely.

Size
1 byte 2 bytes 4 bytes 8 bytes 16 bytes

8 bits 16 bits 32 bits 64 bits 128 bits

C++ char/bool float (long) double

Java boolean char float double

Size 1 byte 2 bytes 4 bytes 8 bytes 16 bytes

8 bits 16 bits 32 bits 64 bits 128 bits

C++ byte short int/long long long __int128

Java byte short int long BigInteger

Internal Sizing of Data Types

* C++ sizes are OS/compiler dependent (Win32 shown)

Signed/Unsigned Types
 Java ensures consistency by always using signed types

 C++ supports both signed & unsigned types

Unsigned

Byte

Signed

Byte

Unsigned

Short

Signed

Short

Size 1 byte 1 byte 2 bytes 2 bytes

Value

Range

0 to 255 -128 to

127

0 to 65,535 -32,768 to

32,767

Principle of Conversion

 To read in unsigned values from C++ the

resulting type in Java needs to be larger

 Also, some extra conversion needs to be done to

fix incorrect sign extension.

Naïve Unsigned Conversion

 short value = (short) in.readByte();

 Question: If a short can hold from 0 to 65,535

why doesn’t this work for values 128-255?

 Answer: Sign Extension applied when casting

How Does Sign Extension Work?

 unsigned byte: 129 = 0x81 = 1000 00012

 The sign bit is extended: 1111 1111 1000 00012

 In twos compliment, if the sign bit = 1, the

number is presumed negative.

Twos Compliment

 Raw Bits Signed Unsigned

 01111111 = 127 127

 00000010 = 2 2

 00000001 = 1 1

 00000000 = 0 0

 11111111 = −1 255

 11111110 = −2 254

 10000001 = −127 129

 10000000 = −128 128

Solution: Bit Masking

byte b = in.readByte(); // reads as signed

short bitmask = (short) 0xff;

short value = (short)(b & bitmask);

1111 1111 1xxx xxxx negative

& 0000 0000 1111 1111 0xFF

0000 0000 1xxx xxxx positive

Be Careful with Unsigned Ints

 long a = (long)(in.readInt() & 0xffffffff);

 doesn’t work!

 Reason: 0xffffffff is a negative value.

 Solution:

 long a = (long)(in.readInt() & 0xffffffffL);

Dealing with Decimals

 Going from a C++ double to a Java float is easy

because both are 8-byte IEEE 754 values.

 Going from a C++ float to Java is harder

because Java does not have a 4-byte float type

 But Java gives tools to make the conversion easy

 int a = in.readInt();

float b = Float.intBitsToFloat(a);

 out.writeInt(Float.floatBitsToInt(floatValue));

Other Pitfalls & Issues

 If your C++ code used bit-fields, you will have

to do bit masking and shifting to read out the

individual fields

 Or use java.util.BitSet

 Reading in text (Strings) – encoding matters

 With “plain English” it may not, but if you have

international characters in your text, it will matter

 InputStreamReader(InputStream in, String enc);

Questions?

