Working with C++
Data 1n Java

Presented by:
Jessica Winblad

This Presentation © 2008 Jessica Winblad

Outline

a [/O with Files & Streams

Real World Example

m Powering test-equipment for 12.5 seconds

Project Requirements

m Send voltage out a parallel port for a specified
time in seconds, to a half-second accuracy

B Run on a2 Windows 2000 or XP. machine

m [ntegrate with a test-suite already written in Java

Engineering Challenge

m With Windows 98 this would have been easy

® Windows 2000 provides less transparent access
to the machine’s hardware

Only hardware device drivers can directly access the
hardware

You can’t write device drivers in Java

Solution

JNI (Java Native Interface)

m class ioPort {
public native void Out32(

short PortAddress, short data);
static { System.loadlLibrary("jnpout32pks™);

j

ioPort pp = new 1oPort();
pp-Out32(0x378, currentVal);

Another Real World Example

Byte and Bit Order Matter

= Big Endian (“Network Byte Order”)
Ho: Motorolla 68k processor

= Little Endian A source value of
Eg: x86 PC OxFEEE =
m May need to test for J 0 B B B B B B S S)
“endianness” Could be read as:

1111 1110 1111 1111
1111 1111 0111 1111

B Java has classes to help with
correcting byte order
(eg: java.nio.ByteOrder) et

Converting Data Types

m Applies to both streams and files

m [f you have a double in C++ should you use a
readDouble() method of your java stream/ file
reader to read it? (No)

® Java and C++ do not always have the same
names for equivalent primitive types.

m Some types don’t map nicely.

Internal Sizing of Data Types

Size | 1byte | 2bytes | 4 bytes 8 bytes 16 bytes
8 bits | 16 bits | 32 bits 64 bits 128 bits

C++ | byte short | int/long | long long __intl28
Java byte short int long Biglnteger
e 1 byte 2 bytes |4 bytes |8 bytes 16 bytes

8 bits 16 bits |32 bits | 64 bits 128 bits
C++ | char/bool float (long) double
Java |boolean |char float double

* C++ sizes ate OS/compiler dependent (Win32 shown)

Signed/Unsigned Types

® Java ensures consistency by always using signed types

m C++ supports both signed & unsigned types

Unsigned | Signed | Unsigned | Signed
Byte Byte Short Short

Size 1 byte 1 byte |2 bytes 2 bytes

Value |0 to 255 1256 to |0 to 65,535 [-32,763 to
Range 127 52,767

Principle of Conversion

m To read in unsigned values from C++ the
resulting type in Java needs to be latger

m Also, some extra conversion needs to be done to
fix incorrect sign extension.

Naive Unsigned Conversion

® short value = (short) in.readByte();

® Question: If a short can hold from 0 to 65,535
why doesn’t this work for values 128-2557

m Answer: Sign Extension applied when casting

How Does Sign Extension Work?

® unsigned byte: 129 = 0x81 = 1000 0001,
m The sign bit is extended: 1111 1111 1000 0001,

® [n twos compliment, if the sign bit = 1, the
number is presumed negative.

Twos Compliment

Raw Bits Signed Unsigned
01111111 = 127 127
00000010 = 2 2
00000001 = 1 1
00000000 = 0 0
11111111 = -1 255
11111110 = —2 254
10000001 = -127 129
10000000 = -128 128

Solution: Bit Masking

byte b = in.readByte(); // reads as signed
short bitmask = (short) Oxff;

short value = (short)(b & bitmask);

L11T IT111 IxxxX XXXX negative
& 0000 0000 1111 1111 OxXEE

0000 0000 Ixxx xXxXXX positive

Be Careful with Unsigned Ints

m long a = (long)(in.readInt() & Oxttfftttt);

doesn’t work!

m Reason: Oxttfftttt is a negative value.

® Solution:
m long a = (long)(in.readInt() & Oxttttttttl);

Dealing with Decimals

® Going from a C++ double to a Java float is easy
because both are 8-byte IEEE 754 values.

m Going from a C++ float to Java is harder
because Java does not have a 4-byte float type

m But Java gives tools to make the conversion easy

B int a = in.readlnt();
tfloat b = Float.intBits TolFloat(a);

m out.writeInt(FFloat.tloatBits Tolnt(tloatValue));

Other Pitfalls & Issues

m [f your C++ code used bit-fields, you will have
to do bit masking and shifting to read out the

individual fields

Or use java.util.BitSet

m Reading in text (Strings) — encoding matters

With “plain English” it may not, but if you have

international characters in your text, it will matter

[nputStreamReader(InputStream in, String enc);

Questions?

