
Working with C++

Data in Java

Presented by:

Jessica Winblad

This Presentation © 2008 Jessica Winblad

Outline

 Working with C++ DLLs

 Java Native Interface (JNI)

 I/O with Files & Streams

 Byte/Bit Order

 Data Type translation

Real World Example

 Powering test-equipment for 12.5 seconds

Project Requirements

 Send voltage out a parallel port for a specified

time in seconds, to a half-second accuracy

 Run on a Windows 2000 or XP machine

 Integrate with a test-suite already written in Java

Engineering Challenge

 With Windows 98 this would have been easy

 Windows 2000 provides less transparent access

to the machine’s hardware

 Only hardware device drivers can directly access the

hardware

 You can’t write device drivers in Java

Solution

 Use a device driver DLL that allows direct

programming of the parallel port

 Use JNI to access the device driver

JNI (Java Native Interface)

 class ioPort {

public native void Out32(

short PortAddress, short data);

static { System.loadLibrary("jnpout32pkg");}

}

…

ioPort pp = new ioPort();

pp.Out32(0x378, currentVal);

Another Real World Example

Byte and Bit Order Matter

 Big Endian (“Network Byte Order”)

 Eg: Motorolla 68k processor

 Little Endian

 Eg: x86 PC

 May need to test for

“endianness”

 Java has classes to help with

correcting byte order

(eg: java.nio.ByteOrder)

A source value of

0xFFFE =

1111 1111 1111 1110

Could be read as:

 1111 1110 1111 1111

 1111 1111 0111 1111

 etc.

Converting Data Types

 Applies to both streams and files

 If you have a double in C++ should you use a

readDouble() method of your java stream/file

reader to read it? (No)

 Java and C++ do not always have the same

names for equivalent primitive types.

 Some types don’t map nicely.

Size
1 byte 2 bytes 4 bytes 8 bytes 16 bytes

8 bits 16 bits 32 bits 64 bits 128 bits

C++ char/bool float (long) double

Java boolean char float double

Size 1 byte 2 bytes 4 bytes 8 bytes 16 bytes

8 bits 16 bits 32 bits 64 bits 128 bits

C++ byte short int/long long long __int128

Java byte short int long BigInteger

Internal Sizing of Data Types

* C++ sizes are OS/compiler dependent (Win32 shown)

Signed/Unsigned Types
 Java ensures consistency by always using signed types

 C++ supports both signed & unsigned types

Unsigned

Byte

Signed

Byte

Unsigned

Short

Signed

Short

Size 1 byte 1 byte 2 bytes 2 bytes

Value

Range

0 to 255 -128 to

127

0 to 65,535 -32,768 to

32,767

Principle of Conversion

 To read in unsigned values from C++ the

resulting type in Java needs to be larger

 Also, some extra conversion needs to be done to

fix incorrect sign extension.

Naïve Unsigned Conversion

 short value = (short) in.readByte();

 Question: If a short can hold from 0 to 65,535

why doesn’t this work for values 128-255?

 Answer: Sign Extension applied when casting

How Does Sign Extension Work?

 unsigned byte: 129 = 0x81 = 1000 00012

 The sign bit is extended: 1111 1111 1000 00012

 In twos compliment, if the sign bit = 1, the

number is presumed negative.

Twos Compliment

 Raw Bits Signed Unsigned

 01111111 = 127 127

 00000010 = 2 2

 00000001 = 1 1

 00000000 = 0 0

 11111111 = −1 255

 11111110 = −2 254

 10000001 = −127 129

 10000000 = −128 128

Solution: Bit Masking

byte b = in.readByte(); // reads as signed

short bitmask = (short) 0xff;

short value = (short)(b & bitmask);

1111 1111 1xxx xxxx negative

& 0000 0000 1111 1111 0xFF

0000 0000 1xxx xxxx positive

Be Careful with Unsigned Ints

 long a = (long)(in.readInt() & 0xffffffff);

 doesn’t work!

 Reason: 0xffffffff is a negative value.

 Solution:

 long a = (long)(in.readInt() & 0xffffffffL);

Dealing with Decimals

 Going from a C++ double to a Java float is easy

because both are 8-byte IEEE 754 values.

 Going from a C++ float to Java is harder

because Java does not have a 4-byte float type

 But Java gives tools to make the conversion easy

 int a = in.readInt();

float b = Float.intBitsToFloat(a);

 out.writeInt(Float.floatBitsToInt(floatValue));

Other Pitfalls & Issues

 If your C++ code used bit-fields, you will have

to do bit masking and shifting to read out the

individual fields

 Or use java.util.BitSet

 Reading in text (Strings) – encoding matters

 With “plain English” it may not, but if you have

international characters in your text, it will matter

 InputStreamReader(InputStream in, String enc);

Questions?

